On the blow-up semidiscretizations in time of some non-local parabolic problems with Neumann boundary conditions

نویسندگان

  • Théodore K. Boni
  • Thibaut K. Kouakou
  • THIBAUT K. KOUAKOU
چکیده

In this paper, we address the following initial value problem

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

Numerical Blow-Up Time for a Semilinear Parabolic Equation with Nonlinear Boundary Conditions

We obtain some conditions under which the positive solution for semidiscretizations of the semilinear equation ut uxx − a x, t f u , 0 < x < 1, t ∈ 0, T , with boundary conditions ux 0, t 0, ux 1, t b t g u 1, t , blows up in a finite time and estimate its semidiscrete blow-up time. We also establish the convergence of the semidiscrete blow-up time and obtain some results about numerical blow-u...

متن کامل

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow-up phenomena for p-Laplacian parabolic problems with Neumann boundary conditions

where p > 2 and is a bounded domain in Rn (n≥ 2) with smooth boundary ∂ . By introducing some appropriate auxiliary functions and technically using maximum principles, we establish conditions to guarantee that the solution blows up in some finite time or remains global. In addition, the upper estimates of blow-up rate and global solution are specified. We also obtain an upper bound of blow-up t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009